1.受益于光纤领域5G需求高成长的拉动、红外&光伏&催化剂的稳定增长,预计到2021年,全球锗需求量将达到209吨。
2,锗在光纤上的应用是其他材料无法替代的。每亿芯公里光纤需锗金属约13.5吨,每亿芯公里光纤需锗金属约9.15吨。
3.目前国际军用红外热像仪市场呈现稳定增长(3.4%)的态势,国际民用市场随着各领域应用的不断拓展呈现出快速增长(10%)的态势;与国际相比,国内红外热像仪市场尚处于快速发展阶段,市场空间巨大。预计到2021年红外领域用锗量将达到47吨。
4.砷化镓太阳能电池具有高效率、高电压、耐温性好等有点,在空间光伏领域锗晶片的不可替代性,决定了未来空间领域太阳能电池锗晶片的100%渗透率。预计到2021年,在光伏领域锗的需求量为43吨。
PIN三节非晶硅、非晶硅锗薄膜太阳能电池原理?
PIN三节非晶硅、非晶硅锗薄膜太阳能电池工作原理的基础是半导体PN结的光生伏打效应。
所谓光生伏打效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。当太阳光或其他光照射半导体的PN结时,就会在PN结的两边出现电压,叫做光生电压。光生伏打效应: 当光照射到pn结上时,产生电子--空穴对,在半导体内部P-N结附近生成的载流子没有被复合而到达空间电荷区,受内部电场的吸引,电子流入n区,空穴流入p区,结果使n区储存了过剩的电子,p区有过剩的空穴。它们在p-n结附近形成与势垒方向相反的光生电场。光生电场除了部分抵消势垒电场的作用外,还使p区带正电,N区带负电,在N区和P区之间的薄层就产生电动势,这就是光生伏特效应。当把能量加到纯硅中时(比如以热的形式),它会导致几个电子脱离其共价键并离开原子。每有一个电子离开,就会留下一个空穴。然后,这些电子会在晶格周围四处游荡,寻找另一个空穴来安身。这些电子被称为自由载流子,它们可以运载电流。将纯硅与磷原子混合起来, 只需很少的能量即可使磷原子(最外层五个电子)的某个“多余”的电子逸出,当利用磷原子掺杂时,得到的硅被成为N型(“n”表示负电),太阳能电池只有一部分是N型。另一部分硅掺杂的是硼,硼的最外电子层只有三个而不是四个电子,这样可得到P型硅。P型硅中没有自由电子(“p“表示正电),但是有自由空穴。空穴实际是电子离开造成的,因此它们带有相反(正)的电荷。它们像电子一样四处移动。电场是在N型硅和P型硅接触的时候形成的。在交界处,它们确实会混合形成一道屏障,使得N侧的电子越来越难以抵达P侧。最终会达到平衡状态,这样我们就有了一个将两侧分开的电场。
锗是什么,用途是什么?
锗(旧译作)是一种化学元素,它的化学符号是Ge,原子序数是32。在化学元素周期表中位于第4周期、第IVA族。它是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近。
锗具备多方面的特殊性质,在半导体、航空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化剂、生物医学等领域都有广泛而重要的应用,是一种重要的战略资源。在电子工业中,在合金预处理中,在光学工业上,还可以作为催化剂。
锗
高纯度的锗是半导体材料。从高纯度的氧化锗还原,再经熔炼可提取而得。掺有微量特定杂质的锗单晶,可用于制各种晶体管、整流器及其他器件。锗的化合物用于制造荧光板及各种高折光率的玻璃。
锗单晶可作晶体管,是第一代晶体管材料。锗材用于辐射探测器及热电材料。高纯锗单晶具有高的折射系数,对红外线透明,不透过可见光和紫外线,可作专透红外光的锗窗、棱镜或透镜。20世纪初,锗单质曾用于治疗贫血,之后成为最早应用的半导体元素。单质锗的折射系数很高,只对红外光透明,而对可见光和紫外光不透明,所以红外夜视仪等军用观察仪采用纯锗制作透镜。锗和铌的化合物是超导材料。二氧化锗是聚合反应的催化剂,含二氧化锗的玻璃有较高的折射率和色散性能,可作广角照相机和显微镜镜头,三氯化锗还是新型光纤材料添加剂。
据数据显示,2013年来光纤通信行业的发展、红外光学在军用、民用领域的应用不断扩大,太阳能电池在空间的使用,地面聚光高效率太阳能电站推广,全球对锗的需求量在持续稳定增长。
全球光纤网络市场尤其是北美和日本光纤市场的复苏拉动了光纤市场的快速增长。21世纪全球光纤需求年增长率已经达到了20%。未来中国光纤到户、3G建设及村通工程将拉动中国光纤用锗需求快速增长。
锗在红外光学领域的年需求量占锗消费量的20-30%,锗红外光学器件主要作为红外光学系统中的透镜、棱镜、窗口、滤光片等的光学材料。红外市场对锗产品的未来需求增长主要体现于两个方面:军事装备的日益现代化带动了对红外产品的需求和民用市场对红外产品的需求。太阳能电池用锗占据锗总消耗量的15%,太阳能电池领域对锗系列产品的未来需求增长主要体现于两个方面:航空航天领域及卫星市场快速发展和地面光伏产业快速增长。